AD-771 747

LAP6 USE OF THE STUCKI-ORNSTEIN TEXT
EDITING ALGORITHM

M. A. Wilkes

Washington University

Prepared for:

Advanced Research Projects Agency
Department of Defense
Public Health Services

Fecbruary 1970

DISTRIBUTED BY:

. National Technical Information Service
: U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R D

(Security classilicetion of title, body of abstract and indexing annotetion must e entered when the overell report is clasellied)

1

1. ORIGINATING ACTIVITY (Corporate author)

Computer Systems Luaboratory
Washington University
St._Louis, Missouri

28. REPORT SECURITY CLASSIFICATION
Unclassified

2b, G ouUP

3. REPORT TITLE

LAP6 Use of the Stucki-Ornstein Text Editing Algorithm

4. DESCRIPTIVE NOTES (Type of report and Inciusive datee)

8. AUTHOR(S) (F‘lur name, middile Initiail, iset name)

M. A. Wilkes

¢. REPORT OATE

February, 1970

78,

TOTAL NO. OF PAGES 7b. NO. OF REFS

27 6

88. CONTRACT OR GRANT NO.
(1) DODXARPA) Contract SD-302
b, prosec $9o NIH(DRFR) Grant No. RR-00396

(1) ARPA Project Code No. 655

d,

98. ORIGINATOR'S REPORT NUMBE R(S)
Technical Report No. 18
9. OTHER n'ﬁonv NO(S) (Any other numbere that may be assigned

thie repori)

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited

11. SUPPLEMENTARY NOTES

. SPONSORING MILITALY ACTIVITY

ARPA — Infonmation Processing Techniques,
Washington, D.C. NIH., Div. of Research

13. ABSTRACT

sequence in the manner of a scroll.

on-line editing.

the memory at a time.

dependent on the size of the playground.

OBSOLETE FOR ARMY USE.

woves147

.

character strings virtually unlimited in length.

is limited only by the length of the scroll.

automatically as the scroll contents change.

An algorithm which runs on a 2048-word LINC provides efficient on-line editing of

Fixed address LINC tape holds the character

scroll as it moves across a display scope under the viewer’s control.

Compensatory inserting and deleting are practical.

no special identification and scroll maintenance is automatic.

Edited characters are spliced directly in or out of the

A 512 character

“playground” created at the splice point provides sufficient ease to permit changing the

scroll contents dynamically, and thereby simplifies scveral problems cominoniy associated with

Inserted characters require

Editing commands and editorial

text identifiers are eliminated, and the number of characters which can be inserted anywhere
Line numnbers, if provided, are resequenced
As littlz as 2% of the scroll is manipulated in
Despite the relatively slow transfer characteristics of the tape,

performance is satisfactory on a LINC for scrolls up to 23 040 characters and is not strongly

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 2215)

REPLACES DD FORM 1478, Y JAN 84, WHICH 18

Security Classification

§ocutity Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE wT

ROLE wT

ROLE wT

Scroll editing
scope editing
on-line editing
iape editing
LAP6

LINC

Security Classification

LAP6 USE OF THE STUCKI-ORNSTEIN
TEXT EDITING ALGORITHM

M. A. Wilkes

TECHNICAL REPORT NO. 18

February, 1970

Coumputer Systems Laboratory
Washington University

St. Louis. Missouri

This work has been supported by the Advanced Research Projects Agency of the
Department of Defense under cotract SD-302 and by the Division of Research Facilities
and Resources of the National Institutes of Health under Grant RR-00396.

1y
t = s
o e 4 e ——
| IS e

1b

B

Probably the most frequent single cause of enor. . .

is the omission of a line (or more lines than one). . ..
We have been speaking. . of the papyrus roll,

which was practically the only form of book in use in

the Greek world until well into the Christian era.

Frederic G. Kenyon
Books and Readers in Ancient

Greece and Rome

.

ABSTRACT

An algorithm which runs on a 2048-ward LINC provides etlicient on-line
editing ol character strings virtually unlimited in length. Fixed address LINC
tape holds the character sequence in the manner of a scroll. Edited characters
are spliced directly m or out of the scroll as it moves across a display scope
under the viewer’s control. A 512 character “playground™ created at the splice
point provides sullicient ease to permit changing the scroll contents
dynamically, and thereby simplilies several problems commonly associated
with on-line editing. Compensatory inserting and deleting are practical,
Inserted characters require no special identilication and scroll maintenance is
automatic. Editing conmunands and editorial text identifiers are eliminated, and
the number of characters which can be inserted anywhere is limited only by
the fength of the scroll. Line numbers, if provided, are resequenced
automatically as the scroll contents change. As little as 2% of the scroll is
manipulated in the memory at a time. Despite the relatively slow transfer
characteristics of the tape, performance is satisfactory on a LINC for scrolls
up to 23 040 characters and is not strongly dependent on the size of the

playground.

TABLE OF CONTENTS

Page
Introduction ..o |
Funetional Description ..o 2
The Seroll oo 2
The Display ..o 2
SuolbMotion oo 3
Seroll Bditing ..o 4
Automatic Renumbering ..o oo 4
The Algonthne oo ... 5
The Playground ... S
Creating the Playground ..o 5
Positioning the Scroll ..o 7
Adding and Deleting Characters ..o 7
Locating and Editing ... 9
Numbering the Lines ... 0 0 9
Section Boundaries ... 9
Joining the Strings ..o 1
Playground Full ..o 14
Efficiency ..o 15
Editing Efficiency ... 15
Playground Efficiency ... o 15
Locating Efficiency ... o o 16
Conclusions 18

g

LIST OF FIGURES

No. Page
I. The display . .. PP e B
2. Moving thie scroll from line 3410 1o line 340 3
3 WHUNE 0N The S0l Lo e 3
4o Lines renumbered ... 3
5. Creating the playground 6
0. Locating backwurd . ..o e 6
7. Adding new information 8
8. Locating forward and splicing 8
9. Working section (Ul o 10

10. Continuation section full ..o 10

11. Working section empty and playground expanded oo 12

12, Strings separated by deletingo 12

13, Playground shift ... e 13

T, Playground full ... o 13

e

INTRODUCTION

Schwartz has remarked that “the process of editing code online is considered by some to be the heart of a
good online system.! Unfortunately one can casily observe that it is also considered by some to be remarkably
complicated. Editing consists first of finding, preferably visually, an editorial point of interest in a collection of
characters. 1t then entails only two things: adding characters and/or runoving characters at that unique poini.
The inherent simplicity of this activity has been enthusiastically obscured in most computer environments.

A machine such as the LINC? is excellently suited to text manipulation. Display scope and keyboard are
standard items, as is a two unit magnetic tape transport whose pocket-sized premarked tapes are randomly
addressable by block number in a manner similar to the TX-23 or the Atlas computer.* The LINC searches for a
requested block by moving the tape in either direction.

With this equipment it has been possible to realize a “scroll editing” scheme which is notable for its
simplicity. directness, and efficiency. Text, or manuscript, is held on a LINC tape which is treated as a scroll
wound onto the two tape hubs. Information on the part of the scroll over the tapehead is presented on the
scope. Motion of the scroll, 1o expose different parts of the manuscript, is directed from the keyboard.

The concept of scroll editing means that a scroll, theoretically unlimited in length, can be edited anyplace and
to any extent by writing directly on the scroll or by erasing information directly from the scroll at the unique
points of interest. The scroll remains homogeneous, although its contents, and probably its length, change
dynamicaily with every editorial correction.

Scroll editing is an integral part of the on-line LINC system LAP6,® which provides a convenient context for

discussing first the operational characteristics and then the editing algorithm.

g
tJ
.

1. FUNCTIONAL DESCRIPTION

A LAP6 manuscript is any collection of LINC keyboard characters, originally entered by the user at the
keyboard or perhaps generated by a program, and retained by LAP6 on a LINC tape as a permanent record of
keyboard input.

The Scroll

Manuscripts ar retained indefinitely in LAP6 files, but we are conceried here with the “current manuscript™
wliich is held in a reserved scroli area on the tape, displayed on the scope, and accessed by the user via the
key voard.

Input characters are saved in a “working section™ of the memory. As the section is repeatedly filled, its
contents are written in consecutive blocks in the scroll area. A block is simply the transfer unit between tape and
memory; the characters carry smoothly across block boundaries, producing a continuous string on the tape. 512

character codes fill one block.

The Display

The scroll is displayed as in Figure 1, which shows five lines of tlie current manuscript together with line
numbers 3412 through 3417. The line numbers are not part of the manuscript. They are supplied automatically
by LAP6 and are provided only at the display to help orient the viewer. The last line number displayed, 3417,

identifies the “‘current line.”

Figure 1. The Display

—— @ epes SNy @ OGEg oSS OB

S s N

Manuscript lines are added to the scroll at the current line and terminatea by striking an undisplayed
erd-of-line key, EOL. The EOL automatically causes the current line number to be incremented.

vhe display renains centered as the viewer edits, with lines automatically scrolled off or onto the 1op of the
display to compensate for the changes. The frame size is under knob control and is determined only by what the
viewer decides is easy to read.

The viewer can do only three things with the scroll: he can move it to look at ditferent parts, he can add

lines to it. and he can erase lines from it.
Scroll Motion

The scroll can be moved in either direction at any time to “roll up” the present view and expose a different
part of the manuscript, which automatically establishes a new curmrent line. The viewer directs the scroll motion
from the keyboard by typing either an arrow and a line number. as in Figure 2(a). or by typing one of four
undisplayed key combinations (chosen simply because they lie under the left hand) which move the scroll

torward (to a higher line number) or backward. nne frame or one line.

() (b)

Figure 2. Moving the scroll from line 3416 to line 340.

Figure 3. Writing on the scroll. Figure 4. Lines renumbered.

The meclanism itself is less important than the ability to move the scroll easily and directly to other
positions. Forward and backward pushbuttons would be more nearly ideal. The line numbers specifically are not
required for this operation and are generally used for making only gross adjustments to the scroll position,
analogous to finding one’s place in printed manuscript by first locating the approximate area by page or chapter
number. The exact point of interest is then verified visually based on content. The visual verification is not only
preferred by most users, but implies that no further identification, such as explicit reference to iine numbers or

matched character strings, is required in order to edit the manuscript.
Scroll Editing

Regardless of how the scroll is moved, or whether it is positioned at the end of the manuscript or somewhere
in the middle. the display always presents a current line on which changes can be made to the manuscript. If the
viewer wants to “insert” lines, he simply types them in. Starting with the situation shown in Figure 2(b), for
example, the new lines become line 341, then line 342, etc. (Figure 3). Alternatively, starting again with Figure
2(b). he strikes a delete key to remove line 340. Subsequent deletions will remove line 337, then line 336, etc.
The changes are integrated into the surrounding context as he types, and he does nothing further about them.

Within the limits of the total scroll area on the tape, the user can add or delete as many characters as he likes,
in any order, wherever he positions the scroll. The manuscript remains one continuous string of keyboard
characters accumulated on the tape, as it scrolls in and out of the memory, in exactly the same order as they

appear on the scope.
Automatic Renumbering

Lines are automatically renumbered by LAP6 as changes are made to the scroll. The numbers thus remain
sequential integers, changing dynamically to reflect the effect of editorial corrections. If following Figure 3 the
user backs up the scroll two lines to establish 341 as the current line and adds new information, he will see by

locating forwa:d into Figure 4 that the former lines 341 and 342 are now 342 and 343.

1. THE ALGORITHM

Most of the functional advantages of scroll editing derive directly from the editing algorithm which was first
proposed by Mishell J. Stucki and Severo M. Ornstein in discussions with the author during March 1965. Despite
subsequent refinement the playground concept and the organization of LINC tape and memory to accomodate it
are largely their cieation.

Although the algorithm is here applied to a character string on a LINC tape, it is appropriate for any
randomly addressable storage device such as a disk or, if necessary, core memorv. Very little core memory is
required, however, and the size of the LINC memory, 2048 12-bit words, greatly motivated articulation of the
algorithm. In the LAP6 case the scroll uses a maximum of 768 words of memory. The total manuscript size and

manuscript line length are, however, virtually unlimited.
The Playground

The Stucki-Ornstein algorithm is based on the cor~=pt of a playground, created by separating the character
string in the memory at the current line to provide a free space for additional cheracters coming from the
keyboard. In Figure 2(b), for example, the playground has been created between the end of line 340 and the
beginning of the undisplayed line 341. Characters, picked up or discarded in the playground, are ““sniiced” in or

out of the scroll as it moves through the memory from one tape reel io the otlier.
Creating the Playground

Figure 5 shows a manuscript on the tape in blocks 1 through 7 of the scroll area. ES, WS, and CS are
256-word sections of memory corresponding in size to LINC tape blocks. If block 4 contains a line, say line 340,
which is requested by the viewer, block 4 is read into the memory and the string broken between lines 340 and
341. In Figure 5, X represents the end of line 340, the “working point,” and Y the beginning of line 341, the
“co{gtinuation point.” Block 3 is also read into the buffer section, BS, to provide continuity for the display. The
display shows the viewer that the scroll is positioned at line- 340, and that the current line number is 341.

The original string is now treated as two separate strings. The first, or working string, i: contained in tape
blocks 1, 2, 3, and the previously‘ mentioned working section, WS, up to point X. The secord, or continuation
string, begins at point Y in the continuation section, CS, followed by tape blocks 5, 6, and 7. The algorithm
requires that tape and memory be thought of as continuous between block 3 and the lcft end of WS, and
between the right end of CS and block §S.

The shaded area in Figure 5 represents the playground, an expansion into the memory of the scroll area on
the tape. The playground happens to be the same size as a memory section or tape block, but this is not
required. It could be larger or smaller, its purpose being only to create “some” extra space at the point of
interest.

This organization of tape and memory to separate the string, create a free area between two strings, and
define the point X in the memory over which the user has control is basic to scroll editing.

MANUSCRIPT

| 2 3 40'4!:- 5 2] T SCROLL
/ /!

MEMORY
i = P "
BS
I[Displuy
Window
Figure 5. Creating the playgrouad
MANUSCRIPT
la '~, -
]
I 2 3 : 4b 5 6 7 SCROLL
il
\
4q
41:\ Iﬂ
/ 3 // 4b MEMORY
L o N - o _..._ .]
BS W5 CcS
Display
Window

Figure 6. Locating backward

]

.3

Positioning the Scroil

If in Figure 5 the viewer repositions the scroll to, say, line 330, so that the scroll must be moved backward,
characters are transferred from the working section into the continuation section (Figure 6), until the point X is
at the end of line 330. Y is now at the bepinning of line 331, and lines 331-340 are now at the beginning of the
cortinuation string. The playground has simply shifted left. Locating forward is identical, except that the
playground is shifted to the right.

Adding and Deleting Characters

The primary purpose of creating the playground is, of course, to be able to handle new information.
Additional characters are stored in the playground starting at the working point as they are typed. X, and the
display, move into the playground the appropriate amount (Figure 7) keeping track of the end of the working
string. Adding new information shrinks the playground. Other than that, there is nothing special about the new
characters. As can be seen in Figure 7, the working string is still continuous from block 1 to point X.

Likewise, if the user deletes lines,* X moves the appropriate amount to the left, shortenirg the working string.
Deleting increases the size of the playground.

One obvious advantage of the scheme is that adding and deleting are compensatcry. When initially created, the
playground can accomodate 512 characters.** The total numb ~ Hharacters which can be added before a new
playground must be created is therefore 512 plus the number deleted.

In either case, since the changes are made exactly where they belong in the string, no further manipulation is
required by either the user or LAP6 in order to incurporate them. The relationship of the working string to the
continuation string remains well defined, and there is no need to distinguish an “edited” from an ‘‘unedited”
manuscript.

The essential elements of the algorithm can be summarized:

1. Moving the scroll in either direction shifts the playground left or right, moving X and Y in
parallel.

2. Adding or deleting information causes the playground to shrink or expand, since only X is

moved. Point Y and the continuation string are temporarily ignored.

In what follows, combinations of these two activities are considered in connection with the line numbers, section

boundary conditions, and the full playground situation.

*LAP6 is line-oriented; the algorithm is the same for character-oriented editing.

**Two character codes are stored per word.

I
|
| 2 3 }ldl 4b S5 6 7 SCROLL
Y
HE?'
-tuz’ ON MEMORY
/ /TAPE,
B'é
Dlsploy
Window
Figure 7. Adding new infor ufion
||
| 2 3 : : 5 6 7 SCROLL
11 ,l I l‘
40’ ab 4c
r"'"'li.r{-_\ Y
/M‘.'Ji-"'/'
3 40/ ON /4b 4¢ MEMORY
/TAPE/
s z
L - - il = o
B8S WS CS
,Z Display
Window

Figure 8. Locating forward and splicing

e

Y.

Locating and Editing

Figure 8 shows the new information added in Figure 7 being spliced into the working string by moving the
scroll forward. The part of the string originally contained in block 4 is now reconfigured in the memory in three
picces (4u, 4b, 4c¢); only the working section contains the correct continuation of the string from block 3.

Since locating simply shifts the playground, the size of the remaining playground is the same in Figures 7 and
8. Thus, although the playground may eventually be filled, the added characters can be distributed throughout
the scroll. 1t follows also that changes made to one part of the seroll may be compensated by changes made to a

different part.
Numbering the Lines

The line numbers are represented simply by two counters. One monitors the current line number, the other
the number of the last line on the scroll The trivial numbering scheme is possible beciwuse scroll editing does not
requite that the lines have fixed identifiers.

When the scroll position is changed, the current line number counter is incremented or decremented. When
information is udded or deleted, both counters are incremented or decremented. When the contents of the two
counters are equul, there is, by definition, no continuation string.

The current line number counter is incremented, therefore, whenever lines are added to the working string,
without regard to the source of the added information. Thus, as keyboard input is interspersed with forward
locating. (Figure 8), the “old” lines are automatically renumbered as they are brought from the continuation

string onto the scope.
Section Boundaries

When either X or Y reaches a section boundary, the section is either full or empty. In order to continue the
current operation the tape must be written or read.

The working section will be filled (X at the WSCS boundary) either by locating forward or adding new
information. When this happens (for example, continuing to locate forward following Figure 8), WS, since it
contains the continuation from block 3, is written in block 4 (Figure 9). WS is then transferred into BS. and X is
reset at the BS-WS boundary. This resctting keeps the working string continuous between blocks 1. 2. 3, 4, and
X in WS. It is not to be confused with increasing the size of the playground, which happens only when deleting.

The shaded area in Figure 9 thus represents only the size of the remaining playground: the playground itself
does not leave the working section. (Permitting X to continue into CS requires for some manipulations that CS
and WS switch roles, which is programmatically awkward.)

Only locating backward can fill CS, Following Figure 8 again. this puts Y on the WS-CS boundary (Figure
10), and the continuation section, since it continues into block 5. is written in block 4. Y is reset at the
right-hand boundary of C5.

I 2 3 4 3 6 T SCROLL
o

—~

; NoT
3 / ON MEMORY
TﬂPf.-;,
BS WS

N -

Figure 9. Working section iull

I 2 3 4 5 6 T SCROLL

/ NaT \
3 oN MEMORY

/ TAPE.

L _—_ AL -

' ws cS

BS
Display
’/window 7

Figure 10. Continuation section full

N e = o=

In either Figure 9 or Figure 10 the original contents of block 4 are, of course, destroyed. However, because
block 4 was initially read into the memory, its space on the tape is frez and no wformation is lost. The memory
contains the same amount of information “NOT ON TAPE"™ that was entered as “uew” information in Figure 7,
and consequently the size of the playground is still the same.

The information not on the tape is therefore not necessarily inserted information. In Figure 9, for example, it
is the remainder of the 4¢ segment of the original contents of block 4. As the user works with the niaruseript,
the tape blocks thus contain different images of the two string sequences at different times.

When the tape transter is made the display is interrupiedd for abiwut U 1 seeomid. Sinee Bliwy 4 was e Jast
block read (Figure 5). the tape is properly positioned and there is little travel time loss.

Either deleting or locating backward can leave the working section empty. If, startin. with Figure 5,
informiadiobh i doletad wwmll X' b o e BEINE Mounden. - s pen of W nm s L Yomger W M
manuscript and the playground is effectively increased by that amount. Since the deleted characters are simply
characters which need not be written back on the tape. the additional playground created is represented by the
shaded wivaon the tape b Figuic 11 S WS s o conanuation {tom block 3, block 3 1s read into WS (ana
block 2 into BS). X is reset at the WS-CS boundary. and the working string is now contained only in blocks 1, 2,
ol W g L (e N The sl ol e pleesamll] o mskelll By bl pamtor of Bloek ¥ 8, of bomrse, 2
(from Figure 5) plus the number of characters in 4a.

Similarly, had CS been emptied by locating forward, since its string is continued in block 5. block § would
have been read into €S and Y reset at the WS-CS boundary, making the continuation string begin at point Y in
CS foltowed by blocks 6 and 7.

If the user continues to delete following Figure 11, the two strings can become widely sepurated, as shown by
the shaded ares on the tye in Figore 12 The wicrking slring it sk coiitingous between block | smd WS, Figure
3 show. what happens if at this point the scroll is moved backward until the contir.aation section is full. As CS
is written on the tape in block 4, segment 2b is moved from block 2 to block 4. and the additional playground
TR R it Blodks 2 @l 5 T st i ideinicdt w e Playgiound st in Figure o, o 1 is aone on the

tape.

Joining the Strings

It the scroll is moved forward following Figure 12, WS will eventually he written as information moves
through the memory from block 4 to block 2. Clearly, locating at the last line is all that is required o join the
e smicp Then Hre last olmmsorer & arrced Bom ¥ e R e woriing StTg S e ohidie g and e
playground is “pushed off"* the end.

The LAPS user is never required to join the sinings. He states system commands at any time, regardless of the
position of the scroll or the extent of cditing. If the strings need to be joined (e.g.. to file the current
manviscript), LAPG joins them automatically. This avoids unnecessary tape handling since under program control
the decision to join the strings can be based only on the extent of editing, and not influenced by the scroll

position. In any case, no scroll manipulation of a maintenance sort is ever required of the viewer.

™~

3 E‘lh 5 & 7 SCROLL
'l\ A

(17 g e

/ Dlsplay
Window

Figure 11. Working section empty and playground expanded

S

/4!) S 6 T SCROLL
A

BS

/ Dusplay
Window

Figure 12. Strings separated by deleting

-13-

YA
I [2a % 4 5 | & | 7 SCROLL
Z LN

2b
“r-*-;ﬁ
™~
/
I 24 / 4b MEMORY
/!
o
L - =, == -ll_,f_ - o
BS WS 2b CS
/Disploy
Window
Figure 13, Playground shift
| 2 3 4 5 6 7 SCROLL
X Y
{ 7 o
NoT [/ J/ vor
4 oN J /S ON MEMORY
TAPE / / TAPE
Z rd
i = 1l i - __F
B8S WS CS
Display
/Window f

Figure 14. Playground full

Playground Full

The playground is “ull when 512 characters in the memory are NOT ON TAPE, and when the last tape block
of the working string 15 contiguous to the first tape block of the continuation string. The situation of Figure 14
follows that of Figure 9 by adding enough characters to total 512, Since WS is the continuation from block 4,
and block 5 continues from €S, the blocks are contiguous.

At this point information about the current seroll position is saved and the two strings are joined
uulmnuiicully as deseribed above. A new playground is then ereated at the former scroll position. The result on
the scope and in the memory is identical to Figure 14. although the segments formerly NOT ON TAPE would
now be labelled Sa™ and “5b™ (as for Figure 5). CS now continues into block 6. As far as the viewer is
cancerned there is no change.

1t nust be emphasized that a tull playground in no way represents an awkward situation or interferes with the
sy tem operation. The procedure for handling it is identical 10 executing two locate requests, except that it is
automatic. The programming overhead incurred is therefore minor; in the LAP6 case it is about thirty machine

instructions.

I1l. EFFICIENCY

The standard configuration of LAPG has a 4> block scroll which accomodates, at 512 eharacters per block,
23 040 characters. The size has been found more thin adequate for most LINC applications, although a few
have used scrolls as long as 270 blocks. Although the algorithm is unrelated to scioll size, its efficiency, of
course, is not,

Moving the scrcii through the meniory as called for by the algorithm requires a little less than one second
per tape block. This includes reading the block into the continuation section, writing it back onto the scroll
from the working section, and checking the transfers. The write and check operations, for which the LINC
has to reverse the tape twice, are the most costly. The LINC tapes are read at regular travel speed of 23
blocks per second.

In practice. the user is aware of frequent but brief tape motions. Long delays are infrequent, due to a
variety of influences which will be discussed. In any case. our experience in the LINC environment has shown

that being able to see the tape move makes any delay more tolerable.

Editing Efficiency

There are no editing commands. which reduces both typing time and errors, and the explicit activity of
adding and deleting characters probably canmot be further simplified. The response on the scope is always
instantaneous. Since the scroll is properly positioned this is true even when the user edits across a boundary

of the working section. A delayed response is possible in the editing situation only if the playground fills up.

Playground Efficiency

Although the user is unaware of the playground per se, he may notice some extra tape motion if it fills
up. depending on how far the current line is from the last line.* In most situations, however, the playground
never fills up, despite extensive editing, because «! the compensatory deleting effect. Some users have never
observed it.

For the same reason the size of the playground when initially created is not critical. Since delays due to a
full playground are seldom incurred, increasing the size of the playground does not significantly affect the
general efficiency.

Reducing the playground’s size. however, will eventually degrade performance. Although it is difficult to
determine a smallest tolerable size, the playground should clearly not be smaller than a typical manuscript
entry, i.c., than the least number of characters which might be inserted before any are deleted. Preferably it
should be a multiple of that number. In LINC program preparation, for example, a manuscript entry is an

instruction line of typically ten characters. Our experience with the 512 character playground indicates that

*The LAP6 scroll is “‘open-ended” only in the direction of the last line. Efficiency can be somewhat improved by
“smoothing™ the scroll in either direction, whichever distance is shorter. On the one-tape LAP6 system overall tape allocation

is more efficient if one end of the scroll is fixed.

this multiple of about 50 times the size of an entry is probably more generous than necessary. When the data
are. mailing lists o1 bibliographies for which a typical entry is about 100 characters, performance, atthough
poorer. is still generally acceptable to most users. Acceptability, however, is undoubtedly influenced by the
fact that a full playeround still requires no user action, except waiting, in order to continue editing. For
most situations the author would not recommend using a pliyground smaller than five times the size of a
typical entry.

The worst case situation regarding the playground occurs when a number of characters is added.and none
deleted. near the beginning of a long manuscript. Using a LAP6 “Add Manuscript™ command, for example, a
filed manuscript can be added to the scroll manuscript at the current line. This amounts to inserting one
manuscript in the middle of another, but the playground fills up once per block of incoming manuscript.
Provision is made tor ihe LAP6 user to break the seroll into separate manuscripts, i.c.. temporarily eliminate

the continuation string. first.
Locating Efficiency

To reduce the delay involved in repositioning the scroll. LAP6 uses one of two techniques to move the
scroll. The first moves it through the memory at about one second per block as described. The other uses a
“scroll index™ to determine the block number of the scroll block containing the requested line. It then moves
the tape. at 23 blocks per second. directly 1o the required block.

The scroll index is a table of line numbers. each entry occupying one memory word corresponding to a
scrolt block. Every time the contents of the working section are written on the scroll in block n, the current
line number is recorded in the nth word in the index. The location of a particular line can later be
detcrmined by comparing pairs of index entries.

This second technique is used whenever moving the scroll through the memory will not change the string
secuence on the tape. This is the case when there is no continuation string, or when no editorial changes
have been made since the working and continuation strings were last jcined. The 23 to 1 saving is
considerable when the viewer is simply locating and reading. as, for example, when first finding his place in
the manuscript.

In the algorithm as presented here the playground is external to the character string on the tape, that is, it
is created without disturbing the scroll sequence. Although the temptation exists to embed the playground
physically in the string, this eliminates the possibility of ever using the faster technigue to move the scroll.
The two strings thus separated will always have to be rejoined. even when no editorial changes have been
made. In the same manner the auionmtic rejoining of the strings described earlier will have to be based on
scroll position alone.

If the playground is externally created, however, one scroll position can simply be abandoned in favor of
another. A new playground is then created at the destination.

The combination of techniques keeps the locating delays from dominating the editing situation. If the user
is only reading, the faster technique is used automatically. If he is editing. he tends to spend more time

typing than he does moving the tape, despite the fact that the tape will in this case move at the slower rate.

Changing one character in the first block of a thirty block manuscript, then, will cost the user about
thirty seconds when VAP6 rcjoins the two strings. On the other hand, if extensive changes are made in the
same manusctipt, a procsss which may ke the user several lours, the sum of all the locating delays will, if

the locating pattern is sequential. still be only thirty seconds.

CONCLUSIONS

The efficiency of scroll editing is primarily influenced by the transfer characteristics of the scroll device,
rather than by limitations inherent in the algorithm, Even with a relatively slow device, however, the balance
between the amount of data which can be efficiently handled and the amount of core memory required is
excellem. Using a LINC tape, a ratio of total scroll size to transfer unit size of 45 to 1 is reasonably
efficient. Further, the 45-block scroll size is not itself a limitation in most applications of the 2048-word
LINC.

In siuarions where a longer scroll is needed, one would recommend either a device with faster transfer
characteristics, such as a disk. or an increase in the size of the transfer unit, The total scroll area can be
quadrupled, for example, without significantly reducing the efficiency, by making the working and
continuation sections in the memory each the equivalent of four tape blocks instead of one. This is poussiole
on some of 1he larger memory LINCs now available.

Surprisingly. perhaps, the concept of creating “some” working space, — a playground, — in the middle of a
character string presents no special problems. The algorithm can be programmed in about 700 LINC
instructions.® including the display, and the investment required specifically to handle the playground itself is
trivial. Nor is the efficiency of the algorithm especially sensitive to the playground’s size. In practice the
algorithm has, if anything, performed better than anticipated.

Scroll editing has been in routine use by about 2,000 people on all varieties of LINCs since the summer of
1967. The technique has bzen found excellent for extensive editing of long character strings, and the resulting
manuscript structure is simple and straightforward. As a result it is used for data preparation in a variety of
applications including the preparation of chemical formulae for molecular graphics work, bibliographies for
information retrieval systems, flow charts, and a variety of programming languages.

The popularity of scroll editing is as much attributable to its operational ease as to its efficiency. The
elimination of scroll maintenance and editing commands have minimized the user's responsibility, and the

editing process itself is direct, reliable, and unencumbered.

*The micro-LINC 300, LINC-8, and PDP-12 all have memories expandable lo 32,000 words.

Ty eay wud BN oan s o

[]

REFERENCES y

J.I. Schwartz, “Online programming,” Comm. ACM, vol. 9, pp. 199-202, March 1966.

W.A. Clark and C.E. Molnar, “A description of the LINC,” in Computers in Biomedical Research,
vol. 2, R.W. Stacy and B. Waxman, eds., New York: Acadeinic Press, 1965, pp. 35-66.

R.L. Best and T.C. Stockebrand, “A computer-integrated rapid-access magnetic tape system with
fixed address,” Proc. Western Joint Computer Conf. 1958, New York: American Institute of
Clsciiical Engineers, 1959, pp. 42-46.

T. Kilburn, R.B. Payne, and D.J. Howarth, “The Atlas supe:visor,” Computers: A Key to Total
Systems Control, 1961 Eastern Joint Computer Conf., AFIPS Proc., vol. 20, New York: Macmillan,
1961, pp. 279-294.

M.A. Wilkes, LAP6 Handbook, Computer Research Laboratory Tech. Rep. No. 2, Washington
University, St. Louis, May 1967.

M.A. Wilkes, LAP6 Manuscript Listings, Computer Systems Laboratory, Washington University, St.
Louis, May 1967.

